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Abstract This chapter presents deep neural network based methods for enhancing
the sensitivity of X-ray telescopic observations with imaging polarimeters. Deep
neural networks can be used to determine photoelectron emission directions, pho-
ton absorptions points, and photon energies from 2D photoelectron track images,
with estimates for both the statistical and model uncertainties. Deep neural network
predictive uncertainties can be incorporated into a weighted maximum likelihood to
estimate source polarization parameters. Events converting outside of the fiducial
gas volume, whose tracks have little polarization sensitivity, complicate polariza-
tion estimation. Deep neural network based classifiers can be used to select against
these events to improve energy resolution and polarization sensitivity. The perfor-
mance of deep neural network methods is compared against standard data analysis
methods, revealing a < 0.75× improvement in minimum detectable polarization for
IXPE-specific simulations. Potential future developments and improvements to these
methods are discussed.
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1 Introduction

Measuring X-ray polarization has been a major goal in astrophysics for the last
40 years. X-ray polarization measurements offer rich opportunities to probe the
magnetic field topology and emission physics of high energy astrophysical sources,
such as accreting black holes and astrophysical jets [1, 2]. The recent development
of photoelectron tracking detectors [3] has greatly improved the prospects of doing
so. The gas pixel detector (GPD) [4] has brought soft X-ray polarimetry (1-10 keV)
to the PolarLight CubeSat test [5], the scheduled NASA IXPE mission [6], and the
potential Chinese mission, eXTP [7].

X-ray polarization telescopes using GPDs directly image electron tracks formed
from photoelectrons scattered by incoming X-ray photons. This technique has the
capability to build up an image of extended sources (e.g., supernova remnants or
pulsar wind nebulae). Fig. 1 shows a schematic of the GPD and fig. 2 gives ex-
ample photoelectron tracks at various photon energies, measured by IXPE’s GPDs.
GPD sensitivity is limited by the track analysis algorithm used to recover source
polarization, spatial structure, and energy, given a measured set of electron track
images.

In the 1 − 15 keV range, the cross-section for photoelectron emission is pro-
portional to cos2 (\ − \0), where \0 is the normal incidence X-ray’s electric vector
position angle (EVPA) and \ the azimuthal emission direction of the photoelectron;
see the previous chapter. Specifically, the emission angles \ follow the distribution

\ ∼ 1
2𝜋

(
1 + 𝑝0 cos[2(\ − \0)]

)
. (1)

By measuring a large number of individual photoelectron emission angles {\̂𝑖}𝑁𝑖=1,
one can recover the above distribution to extract the source polarization parameters:
polarization fraction (0 ≤ 𝑝0 ≤ 1) and EVPA (−𝜋/2 ≤ \0 < 𝜋/2). In practice, the
recovery of photoelectron emission angles from track images is imperfect. Track
images are noisy due to Coulomb scattering and diffusion, and, especially for low

Fig. 1 Design of the GPD.
An incoming X-ray photon
interacts with a gas molecule
to produce a photoelectron
between the entrance window
and the gas electron multiplier
(GEM). Secondary charges
created along the photoelec-
tron’s path are multiplied by
the GEM and read out at the
anode plane. This forms a 2D
photoelectron track image on
hexagonal pixel grid; fig. 2
gives some examples. Figure
from [8].
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Fig. 2 A selection of measured photoelectron track events from IXPE GPDs. Pixel color density
represents charge deposited, blue crosses show photon x-y absorption point and blue lines the initial
photoelectron direction. Pixels are thresholded at 10 counts. Track morphologies vary widely and
depend strongly on energy.

energies, are often barely resolved. For example, in fig. 3 the distribution of recovered
emission angles using IXPE’s classical track reconstruction is significantly blurred
compared to the true distribution.

The best classical track reconstruction method for GPDs is a moment analysis
described by [3] and in the previous chapter. Impressive accuracies for the emission
angle and photon absorption point are achieved from a simple weighted combination
of track moments. Photon energy estimates are proportional to the total collected
GPD charge for a track. The track ellipticity is quantified to provide a rough proxy
for track reconstruction quality. High ellipticity tracks typically have more accurate
angle estimates. However, simple moments cannot capture all image information,
especially for long high energy tracks, and so a more sophisticated image analysis
scheme can lead to improved track emission angle, absorption point, and energy
recovery.

Once the emission angles have been reconstructed, {\̂𝑖}𝑁𝑖=1, classical polarization
estimation uses a maximum likelihood estimator (MLE) or direct curve fit to calculate
(𝑝0, \̂0). This assumes individual tracks contribute equally to the final polarization
estimate. In fact, photoelectron tracks are very morphologically diverse, even for
the same photon energy (cf. fig. 2), and so emission angle estimates are highly
heteroskedastic: some emission angles are much better estimated than others. This
is especially true for tracks of different photon energies, important in the case of
broadband polarization estimates. Assuming an equal contribution from all estimated
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Fig. 3 Photoelectron angles
for a 100% polarized (𝑝0 = 1)
6.4keV simulated line source.
Black gives the true photo-
electron angles, blue gives the
recovered photoelectron an-
gles for the standard moment
analysis.

emission angles results in sub-optimal polarization recovery. To ameliorate this,
IXPE’s standard analysis performs an event cut removing tracks in the bottom 20%
of estimated ellipticities; this does provide a marginal improvement in the recovered
polarization signal. However, a detailed analysis with proper estimation of emission
angle uncertainties and their inclusion in the likelihood function can substantially
improve the signal-to-noise ratio of recovered polarization.

Neural networks are supervised learning models that are the state of the art for
classification and regression problems in many fields, especially computer vision [9].
They are highly non-linear models trained on large datasets of labelled input-output
example pairs. Neural networks are often criticized as black box models with no
output interpretability. However, recent work in uncertainty quantification for neural
networks [10] has demonstrated these models are capable of trustworthy uncertainty
estimates on their predictions. Neural networks’ success in dealing with image data
and their advances in uncertainty quantification make them a perfect candidate for
X-ray polarimetry track analysis [11, 12].

This chapter outlines neural networks approaches to track analysis algorithms,
covering both track reconstruction and polarization estimation. The methods dis-
cussed in this chapter were developed primarily for GPDs, but should be applicable
to all imaging X-ray polarimetry technologies, such as the time projection chambers
proposed for the former GEMS/Praxys mission [13].

1.1 How this chapter is organized

• §2 contains an overview of the data analysis process necessary to go from tele-
scope observations to polarization measurements and energy spectra, including
some of the standard pipeline, covered in more detail in the previous chapter.

• §3 gives a brief overview of neural network models and the types of deep learning
important for X-ray polarimetry, with a discussion of uncertainty quantification
for neural networks.
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• §4 describes an application of neural networks to track reconstruction: extracting
emission angles, absorption points and photon energies from GPD track images.
Comparison of neural network methods to the standard data analysis. A neural
network approach to identifying and removing events outside of the main detector.

• §5 illustrates the use of neural network results for polarization estimation: us-
ing neural network predicted uncertainties on emission angles to form a proper
maximum likelihood estimator of the polarization parameters. Comparison of
neural network methods to the standard data analysis. Discussion of the impacts
of events outside of the main detector gas.

• §6 contains the conclusion, limitations, and future directions in the field.
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2 Imaging X-ray polarimetry

Measuring the X-ray polarization of a source using an imaging X-ray polarimeter is,
from a data analysis perspective, a two step process.

1. Track reconstruction. The telescope is pointed at the source and collects photo-
electron track images, see fig. 2. Individual track images are processed to extract
all of the relevant features: emission angles, absorption points and photon ener-
gies.

2. Polarization estimation. The extracted emission angles from many individual
photoelectron tracks are combined to estimate the source polarization parameters.

For spatially extended, time-varying or spectrally varying sources, the extracted
emission angles could be grouped based on absorption points, arrival time or photon
energy, i.e. in spatial, time and/or energy bins. Polarization estimation from these
grouped emission angles follows the same procedure.

This chapter describes classical approaches for both steps, a prerequisite for the
neural network approach. In classical polarization analysis the two steps are entirely
disconnected. §5 will show how these two steps can be more closely connected using
neural network uncertainty estimates.

2.1 Track reconstruction

Photoelectron track images contain all the extractable information in imaging X-
ray polarimeters. More specifically, the various sensitivities of an imaging X-ray
polarimeter can be attributed to a few photoelectron track features that can be
extracted from individual track images:

• Polarization sensitivity: photoelectron emission angle \, §2.1.1.
• Spatial sensitivity: photon absorption point (𝑥, 𝑦), §2.1.2.
• Spectral sensitivity: photon energy 𝐸 , §2.1.3.

Tracks are imaged by charge deposition onto an array of pixels. For example, IXPE’s
GPD pixel array is a ∼ 15mm x 15mm square tiled with hexagonal pixels on a 50`m
pitch [8]; see fig. 4. The charge deposited in each pixel is measured in integer counts,
typically ranging from 0 to 1000+, fig. 2. Track images are identified on the pixel
array by clustering analysis and the region of interest is cropped. Each track image
comes as a list of (𝑥, 𝑦, 𝑐) tuples: the pixel coordinates 𝑥, 𝑦 and charge deposited 𝑐.

There are a number of instrument specific settings that affect track morphology.
For example, a pixelwise charge threshold is usually applied to individual track
images to reduce small noisy pixel clusters. The GPD gas pressure and composition
can also be varied; lower pressure allows for longer tracks that are easier to reconstruct
but reduces the detector quantum efficiency. The methods presented in this chapter
generalize to all imaging polarimeter settings, details on optimizing specific settings
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Fig. 4 Layout of IXPE GPD
readout pixel array. There are
approximately 90000 pixels.
More pixels allow for better
track reconstruction. Figure
from [3].

can be found in chapters XY. The examples shown here assume IXPE-specific GPD
settings.

2.1.1 Emission angle reconstruction

Source polarization is encoded in the photoelectron emission angles \. These are
the image plane projected initial directions of the photoelectron at the interaction
point. Track images capture the entire track of the photoelectron in the image plane,
so in principle it should be possible to recover the initial direction. In practice,
track images are relatively noisy representations of the photoelectron path. Charge
diffusion means the further away from the pixel array a photoelectron is emitted, the
less well defined its track image will be.

Track images are typically asymmetric and follow a similar pattern: the photoelec-
tron starts at the absorption point and moves along its initial direction. Sometimes an
Auger electron is also released at the absorption point. As the photoelectron moves
away from the absorption point, it is Coulomb scattered away from the initial di-
rection. As the photoelectron slows down, it ionizes more gas molecules, depositing
more charge in the pixel array and culminates in a final Bragg peak. Low energy
photoelectrons travel less far from the absorption point and leave nearly circularly
symmetric track images.

The scattering of the photoelectron from its initial direction and short, symmetric
photoelectron tracks make emission angle reconstruction challenging. The moment
analysis described in [3] uses the known structure of photoelectron tracks to improve
their emission angle estimates. They initially calculate the principal axis of the track
image by maximizing the second charge moment about the track barycenter. This
provides a simple initial estimate of the emission angle, but is skewed by the Bragg
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peak – the dense final part of the track that is usually not correlated to the initial
direction because of Coulomb scattering. To correct for the Bragg peak bias, the
location of the Bragg peak is calculated by observing the sign of the third charge
moment about the track barycenter. This identifies which side of the track contains
the Bragg peak. The absorption point is estimated as being a multiple of the second
moment away from the track barycenter along the principal axis, away from the
Bragg peak. Finally, the emission angle is calculated by using the second moment
about the absorption point, using only pixels in the initial half of the track (those not
on the Bragg peak side). See the previous chapter for more details on the moment
analysis.

2.1.2 Absorption point reconstruction

Photon absorption points (𝑥, 𝑦) on the image plane along with the known point
spread function (PSF) of the telescope optics allow for the spatial resolution of ex-
tended sources. Better absorption estimates yield better spatial resolution. A simple
estimator for the absorption point of an individual photon from its track image is the
track barycenter, but this can be strongly biased by the photoelectron Bragg peak
§2.1.1. In moment analysis [3], the absorption point is estimated jointly with the
emission angle by identifying and excluding the Bragg peak. For low energy sym-
metric tracks where it is impossible to separate the Bragg peak, the track barycenter
is used as the standard absorption point estimator.

2.1.3 Energy reconstruction

An X-ray photon’s energy is proportional to the average charge deposited in the
detector. Since the charge deposited is subject to statistical fluctuations, the energy
resolution is limited and this limit depends on the effective detector Fano factor.
Classical polarimetry uses a simple linear model calibrated on real detector track
images to reconstruct the photon energy. Thus, the total track charge is assumed
proportional to the photon energy. This method approaches but does not meet the
theoretical best energy resolution.

2.1.4 Events converting outside of the gas volume

So far, the track images considered are formed when photons interact with the detector
gas. However, incoming X-ray photons can also convert in detector components just
outside of the main gas volume, with electrons penetrating the gas triggering the GPD
and producing photoelecton tracks. For IXPE’s GPDs, these external interactions
occur in the thin beryllium entrance window at the top of the GPD and in the gas
electron multiplier copper material at the bottom, fig. 1. The track images formed
by these external interactions have different morphological properties compared to
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Fig. 5 Left: Recovered energy histogram for a 6.4keV line source. A simple linear function of
total charge deposited is used here for recovered energy, as in the standard moment analysis. The
long low energy tail is produced by events converting in the window or GEM. Right: Fraction of
events that are ‘tails’ as a function of energy. Red and blue traces show the Be window and GEM
conversion respectively. The jump in GEM conversions at 8.9 keV Cu edge is prominent.

those in the detector gas. Notably, they have less total charge deposited for the
same photon energy, because some of the photoelectron energy can be lost in the
solid window or GEM material. In addition they tend to have a denser ‘core’ since
the photoelectrons surviving to the gas volume tend to have trajectories with a
large vertical component. The left panel of fig. 5 shows the linearly reconstructed
energy (§2.1.3) for a 6.4keV line source. External events form a low energy tail on the
predicted energy histogram – external events are described here tail events, producing
tail tracks, while events converting in the detector gas are called peak events. The
right panel gives the population fraction of tail events as a function of photon energy.
Tail tracks are mostly subdominant, but with a linearly increasing fraction as photon
energy increases. At energies above 8.9 keV, the Copper K absorption edge causes a
large increase in tail events in the GEM, increasing the tail track fraction.

Tail tracks also have significantly reduced polarization signal compared to peak
tracks. The emitted photoelectron is scattered more strongly in the dense GEM
and window materials than in the detector gas; as a result, the initial photoelectron
direction is often irrecoverable. Fig. 6 gives the simulated polarization sensitivity
as a function of vertical direction along IXPE’s GPD, using the moment analysis to
estimate photoelectron emission angles. There is a clear drop in sensitivity at both
vertical edges of the detector where tail tracks dominate the absorption. Additionally,
this figure serves to illustrate the decrease in polarization sensitivity with increasing
vertical distance from the pixel array. This is due to charge diffusion in the detector
gas blurring tracks before they reach the pixel read-out array (§2.1.1).

If included, tail tracks can cause problems during polarization estimation. Not
only do tail tracks degrade the detector polarization sensitivity, the energy-dependent
tail fraction can make it difficult to properly calibrate the polarization sensitivity and
degrade the energy resolution for continuous spectra. In classical imaging polarime-
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Fig. 6 Polarization sensitiv-
ity, measured by the modu-
lation factor ` (§2.2), as a
function of absorption point
height in IXPE’s GPD. Dotted
lines denote the edges of the
GPD, the top at z=10.83mm
is the Beryllium window, and
the bottom at z=0.83mm is the
Cu-coated GEM.
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try, tail tracks are cut from the line source calibration by excluding the low energy
tail from the recovered energy histogram, fig. 5. For real, continuous sources this
is not possible, so tail tracks remain an important problem for classical polarimetry
approaches. §4.4 will describe how a NN analysis can identify tail tracks based on
their morphological differences and decrease their contamination of the polarization
signal.

2.2 Polarization estimation

Polarization estimation can begin once all relevant track features have been recovered.
The basic problem is to estimate source polarization parameters (𝑝0, \0) and their
uncertainties from a set of reconstructed emission angles {\̂𝑖}𝑁𝑖=1. As described in
the introduction, true emission angles \ exhibit a sinusoidal modulation with period
𝜋 that depends on the source polarization

𝑝(\ |𝑝0, \0) =
1

2𝜋
(
1 + 𝑝0cos

[
2(\ − \0)

] )
, (2)

where 0 ≤ 𝑝0 ≤ 1, −𝜋/2 ≤ \0 < 𝜋/2 and −𝜋 ≤ \ < 𝜋. Reconstructed emission
angles \̂ are imperfectly recovered, so these follow an adjusted distribution

𝑝(\̂ |𝑝0, \0) =
1

2𝜋
(
1 + 𝑝0`cos

[
2(\̂ − \0)

] )
. (3)

The modulation factor 0 ≤ ` ≤ 1 is a measure of the detector polarization sensitivity:
how well the emission angles are recovered. A higher modulation factor means better
polarization sensitivity and ` = 1 means perfect emission angle reconstruction,
\ = \̂. The modulation factor is the recovered polarization fraction 𝑝0 for a 100%
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polarized source, 𝑝0 = 1. Fig. 3 gives an example for a 𝑝0 = 1 source, the moment
analysis recovered emission angles follow the blue ` < 1 distribution while the true
emission angles have ` = 1. The modulation factor is a function of photon energy,
higher energy tracks have higher modulation factor because they have longer tracks,
thus better emission angle estimates. Track reconstruction algorithms and detector
hardware both affect the instrument modulation factor. The modulation factor can be
considered an average of the reconstruction quality of all tracks for a particular source
energy spectrum. In §5 we will revisit the modulation factor from first principles;
for now it can be treated as a known constant for a given source energy spectrum,
determined by instrument calibration.

2.2.1 Stokes parameters

It is usually simpler to estimate the normalized linear Stokes parameters (Q,U)
instead of the polarization fraction and EVPA (𝑝0, \0). These are an alternative
representation of the source linear polarization. Disregarding circular polarization,
the Stokes parameters are defined as

𝑄 = 𝐼 𝑝0 cos 2\0, (4)

𝑈 = 𝐼 𝑝0 sin 2\0, (5)

where 𝐼 is the source intensity, and the normalized Stokes parameters are

Q = 𝑝0 cos 2\0, (6)

U = 𝑝0 sin 2\0, (7)

−1 ≤ Q ≤ 1, −1 ≤ U ≤ 1, from which the polarization fraction and EVPA can be
derived:

𝑝0 =
√︁
Q2 + U2, (8)

\0 =
1
2

arctan
U
Q . (9)

Using Stokes parameters, the probability density eq.3 can be rewritten

𝑝(\̂ |Q,U) = 1
2𝜋

(
1 + Q` cos 2\̂ + U` sin 2\̂

)
. (10)

This is a more convenient form because the probability density is linear in the Stokes
parameters, unlike for (𝑝0, \0). Some researchers even prefer to work solely with
Stokes parameters. Since likelihoods are invariant to reparameterization, estimating
the Stokes parameters and converting back to (𝑝0, \0) is equivalent to estimating
(𝑝0, \0) directly, although some care must be taken in propagating the uncertainties.



14 Contents

2.2.2 Methods

With the modulation factor known, (𝑝0, \0) and/or (Q,U) can be recovered from
the emission angles {\̂𝑖}𝑁𝑖=1 in a number of ways. The simplest method is a binned
curve fit, i.e. directly fitting the probability density eq.10 to the histogram of emission
angles {\̂𝑖}𝑁𝑖=1, fig.3. Since the Stokes parameters are linear in the probability density
eq.10 they can be fit using binned least squares. The resulting estimates (Q̂, Û) are
unbiased and equivalent to the maximum likelihood estimator (MLE), so long as the
bin widths are small enough and each bin contains enough events such that Poisson
statistics can be well approximated by Gaussian. This is not always the case, so
directly applying the MLE is often a better approach.

The MLE is the estimator (Q̂, Û) that maximizes the likelihood function:

𝐿 ({\̂𝑖}𝑁𝑖=1 |Q,U) =
𝑁∏
𝑖=1

1
2𝜋

(
1 + Q` cos 2\̂𝑖 + U` sin 2\̂𝑖

)
. (11)

Here 𝐿 is a function of (Q,U) and the observations {\̂𝑖}𝑁𝑖=1 are fixed. Computation-
ally, it is easier to minimize the negative log-likelihood function

− log 𝐿 = 𝑁 log 2𝜋 −
𝑁∑︁
𝑖=1

log
(
1 + Q` cos 2\̂𝑖 + U` sin 2\̂𝑖

)
. (12)

This expression must be minimized numerically to find (Q̂, Û). Confidence intervals
are calculated by numerically integrating the negative log likelihood function in the
vicinity of the final estimator. Stokes parameter estimators and their errors can be
simply transformed into (𝑝0, \̂0) if desired.

It is often inconvenient to evaluate the MLE and its errors numerically. An
analytical solution for the MLE exists if |Q` | << 1, |U` | << 1. In practical X-ray
polarimetry this limit is nearly always satisfied; polarimeters typically don’t achieve
much better than ` . 0.5 averaged over a continuous spectrum and real astrophysical
sources generally have low polarization 𝑝0 . 0.3. By applying the Taylor expansion
log(1 + 𝑥) ≈ 𝑥 − 𝑥2/2 to the negative log-likelihood eq. 12 and minimizing the
resulting quadratic form one finds

Q̂ =
1
`

(∑𝑁
𝑖=1 cos 2\̂𝑖 −

∑𝑁
𝑖=1 cos 2\̂𝑖 sin 2\̂𝑖)

∑𝑁
𝑖=1 sin2 2\̂𝑖∑𝑁

𝑖=1 cos2 2\̂𝑖
∑𝑁
𝑖=1 sin2 2\̂𝑖 − (

∑𝑁
𝑖=1 cos 2\̂𝑖 sin 2\̂𝑖)2

, (13)

Û =
1
`

(∑𝑁
𝑖=1 sin 2\̂𝑖 −

∑𝑁
𝑖=1 cos 2\̂𝑖 sin 2\̂𝑖)

∑𝑁
𝑖=1 cos2 2\̂𝑖∑𝑁

𝑖=1 cos2 2\̂𝑖
∑𝑁
𝑖=1 sin2 2\̂𝑖 − (

∑𝑁
𝑖=1 cos 2\̂𝑖 sin 2\̂𝑖)2

. (14)

Notice thatE[∑𝑁
𝑖=1 cos 2\̂𝑖 sin 2\̂𝑖] = 0,E[∑𝑁

𝑖=1 cos2 2\̂𝑖] = 𝑁/2 andE[∑𝑁
𝑖=1 sin2 2\̂𝑖] =

𝑁/2. For the relatively large 𝑁 in X-ray polarimetry, these terms are effectively con-
stants, so the expressions reduce to
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Fig. 7 Confidence intervals from full posterior distribution (eq.17) over polarization parameters
(𝑝0, 𝜙0) given estimates ( �̂�0, �̂�0) using 𝑁 events and instrument modulation factor `. Confidence
intervals for 68.2%,95.5% and 99.7% (1𝜎, 2𝜎, 3𝜎) are displayed. The full marginal posterior
distributions are plotted on the wings with 68.2% (1𝜎) confidence intervals drawn.

Q̂ =
2
𝑁`

𝑁∑︁
𝑖=1

cos 2\̂𝑖 , (15)

Û =
2
𝑁`

𝑁∑︁
𝑖=1

sin 2\̂𝑖 . (16)

Because these are unbiased and MLE, they are the minimum variance unbiased
estimators for (Q,U). In other words, so long as |Q` | .< 1, |U` | .< 1 and
𝑁 & 1000, these are the best possible estimators for (Q,U).

Kislat et al. [14] derive the full analytical posterior distribution for both (Q,U)
and (𝑝0, \0) given the estimators eqs.15,16. They find the (Q,U) posterior follows
a bivariate normal distribution while the (𝑝0, \0) posterior is
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𝑝(𝑝0, \0 |𝑝0,\̂0) =
√
𝑁𝑝0`

2

2𝜋𝜎
×

exp

[
− `2

4𝜎2

{
𝑝2

0 + 𝑝
2
0 − 2𝑝0𝑝0 cos(2(\̂0 − \0))

−
𝑝2

0𝑝
2
0`

2

2
sin2 (2(\̂0 − \0))

}]
,

(17)

where

𝜎 =

√√√
1
𝑁

(
1 −

𝑝2
0`

2

2

)
. (18)

The posterior assumes a uniform prior over (𝑝0, \0). With the posterior in hand, any
desired confidence interval can be computed analytically or numerically. High ` and
high 𝑁 reduce the width of the posterior so are both desirable to minimize the errors
on recovered polarization parameters. Note that the estimator 𝑝0 is not unbiased, its
posterior is highly asymmetric for low 𝑝0 since 𝑝0 ≥ 0. For 𝑝0 = 0 some polarization
fraction 𝑝0 > 0 will always be measured. The amount of polarization likely to be
measured when 𝑝0 = 0 depends on the width of the posterior, i.e. 𝑁 and `, and is
often used as a measure of detector sensitivity or signal-to-noise ratio (SNR), §2.2.3.
Fig. 7 shows the posterior distribution for an example observation.

The recommended approach to polarization estimation is using eqs. 15, 16 for
point estimates and the derived posterior eq. 17 for confidence intervals. This ap-
proach is expedient and optimal given the instrumental constraints of imaging X-ray
polarimetry. In §5 we extend eqs. 15 – 17 to include neural network uncertainty
estimates on predicted emission angles \̂.

2.2.3 Minimum detectable polarization (MDP)

The standard figure-of-merit used in X-ray polarimetry to compare instrument sen-
sitivity is minimum detectable polarization (MDP) [15]. MDP99 is the polarization
fraction that has a 1% probability of being exceeded by chance for an unpolarized
(𝑝0 = 0) source. This can be found by integrating the posterior distribution eq.17:∫ MDP99

0

∫ 𝜋/2

−𝜋/2
𝑝(𝑝0, \0 |𝑝0, \̂0)𝑑\0𝑑𝑝0 = 0.99, (19)

MDP99 =
4.29
`
√
𝑁
. (20)

On fig. 7, the MDP99 would be the one sided 99% confidence interval for the 𝑝0
marginal distribution (top panel).

The MDP99 depends only on the modulation factor (signal) and the Poisson
counting noise 1/

√
𝑁; it is effectively an inverse of the SNR. Polarimeters with lower



Contents 17

MDP99 can expose for shorter times and get the same confidence on their polarization
measurements. Track reconstruction and polarization estimation approaches that
increase the modulation factor for a fixed number of tracks 𝑁 will decrease the
MDP99. Sections 4 and 5 will describe how a neural network approach can improve
both track reconstruction and polarization estimation to minimize the MDP99.
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3 Deep neural networks

Deep neural networks have achieved state-of-the-art performance on a wide variety
of machine learning tasks and are becoming increasingly popular in domains such
as speech recognition [16], natural language processing [17], bioinformatics [18]
and especially computer vision [19]. Going from track images to emission angle
estimates can be classified as a computer vision problem, so it is not surprising
that neural networks would be well suited to track reconstruction. The Cherenkov
Telescope Array (CTA) [20] team have applied related deep learning methods to
differentiate between cosmic rays and gamma rays. Notably they also have to deal
with a hexagonal pixel grid, also found in imaging X-ray polarimeters. The IceCube
collaboration has begun the use of graph neural networks to identify 3D neutrino
tracks with great success [21]. This section briefly covers deep neural network and
machine learning concepts relevant to X-ray polarimetry, but for a proper introduction
to this important field see [22, 23].

3.1 Machine learning with deep neural networks

Deep neural networks (DNNs) are a type of supervised machine learning algorithm.
Machine learning algorithms learn from data, as opposed to a fixed algorithm pro-
grammed by human beings. Supervised machine learning algorithms learn from
labelled data: known input-output pairs {𝑥𝑖 , 𝑦𝑖}𝑁𝑖=1. An example from X-ray po-
larimetry would be track image (input), emission angle (output). Supervised machine
learning algorithms can be used to solve a variety of tasks. Most tasks belong to one
of two groups: regression or classification. In regression the algorithm is trained to
predict a continuous numerical value given an input. In classification, the algorithm
predicts the probability an input belongs to a particular class from a preselected
group of finite classes. In the case of track reconstruction, we are interested mainly
in regression.

In essence, DNNs approximate the unknown function 𝑓★ that maps prob-
lem inputs to outputs 𝑦 = 𝑓★(𝑥). DNNs are organized as a forward network
of function layers each with their own learnable parameters or weights 𝑤, e.g.
𝑓 (𝑥) = 𝑓3 ( 𝑓2 ( 𝑓1 (𝑥;𝑤1);𝑤2);𝑤3). The initial function layer 𝑓1 is known as the input
layer, the final layer 𝑓3 is the output layer, and all layers in between are the hidden
layers. Using many hidden layers tends to improve the predictive capacity of the
DNN, whence the term ’deep learning’. During training, the DNN 𝑓 (𝑥) is iteratively
directed towards 𝑓★(𝑥).

If the layer functions 𝑓1, 𝑓2, 𝑓3 were linear then the DNN 𝑦 = 𝑓 (𝑥) would be a
linear model 𝑦 = 𝑤𝑇 𝑥, equivalent to a simple least squares approach. DNNs use
non-linear layer functions. This allows the DNN to learn non-linear relationships
between the input features 𝑦 = 𝑤𝑇2 𝑓1 (𝑥;𝑤1). Here 𝑓1 (𝑥;𝑤1) is a non-linear function
with learnable parameters 𝑤1. In this way DNNs are able to learn what functions of
the input features should be combined, unlike a linear model that linearly combines
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Fig. 8 Feed-forward neural network with one hidden layer. The neural network takes vector x as
input and produces vector 𝑦 as output.

input features directly. A simple example of a non-linear layer function used in DNNs
is 𝑓1 (𝑥;𝑤1, 𝑏) = 𝑔(𝑤𝑇1 𝑥 + 𝑏) where 𝑤1 is a matrix and 𝑔 is a non-linear function
such as tanh, the sigmoid function or a rectified linear unit (ReLU). DNNs using this
kind of layer are universal function approximators in the asymptotic limit [24], so
they should in principle well approximate any 𝑓★(𝑥). In practice, memory, training
and data limitations make this difficult to achieve. Many DNNs use domain specific
layer functions and architectures to reduce these limitations and converge to 𝑓★(𝑥)
more quickly, see §3.2. Figure 8 shows a schematic of a simple DNN.

3.1.1 Training

As in supervised linear models like least squares regression, DNNs are trained to
minimize a specific loss function over the observed data. In most tasks this normally
means minimizing the negative log-likelihood, as in §2.2. For regression tasks, if
the output distribution family 𝑝(𝑦 |𝑥) is unknown, a Gaussian should usually be the
default since it is the least informative choice. For a Gaussian likelihood, the negative
log likelihood is

𝐿 ({𝑦𝑖 , 𝑥𝑖}𝑁𝑖=1 | w) ∝
𝑁∑︁
𝑖=1
‖𝑦𝑖 − �̂�(𝑥𝑖 |w)‖2, (21)
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the mean squared error (MSE) of prediction for the dataset. The loss function 𝐿 (w) is
minimized over the DNN weights w. MSE is a common loss function for regression
with DNNs.

For classification tasks, 𝑝(𝑦 |𝑥) is usually assumed to follow a Bernoulli (in binary,
2-class classification) or categorical distribution (in >2 class classification). In the
Bernoulli case, the negative log-likelihood is

𝐿 ({𝑦𝑖 , 𝑥𝑖}𝑁𝑖=1 | w) ∝
𝑁∑︁
𝑖=1
−𝑦𝑖 log

(
�̂�(𝑥𝑖 |w)

)
− (1 − 𝑦𝑖) log

(
1 − �̂�(𝑥𝑖 |w)

)
. (22)

In order to ensure 0 ≤ �̂�𝑖 ≤ 1, DNNs for classification usually end with a softmax
layer [25]. These project DNN outputs onto the appropriate simplex, i.e., makes sure
all predicted probabilities sum to one. For K output classes

Softmax(x)𝑖 =
𝑒𝑥𝑖∑𝐾
𝑖=1 𝑒

𝑥𝑖
(23)

Since DNNs use non-linear functions, eq. 21 or 22 cannot be minimized analyt-
ically. Non-linearity makes the loss function complex with multiple local minima
and saddle points in a very high dimensional weight space {w}. This challenging
minimization problem is usually tackled with variations on the stochastic gradient
descent (SGD) algorithm [22]. At each iteration SGD approximates the gradient of
the loss function using a subset of the training data

𝑔𝑖 = ∇w𝐿 (w) ≈
𝑛∑︁
𝑖=1
∇w‖𝑦𝑖 − �̂�(𝑥𝑖 |w)‖2, 𝑛 << 𝑁 (24)

and takes a step in parameter (w) space along the direction of the negative gradient

w𝑖+1 = w𝑖 − 𝜖𝑔𝑖 . (25)

The process is repeated until suitable convergence. The weights are initialized ran-
domly [] and the learning rate 𝜖 is a tuneable scalar for the specific application. The
gradient for each individual 𝑤𝑖 can be calculated by using the chain rule through each
layer of the DNN, in a process called backpropagation [22]. In order for SGD to work,
the DNN has to use a differentiable loss function and layer functions 𝑓1, 𝑓2, 𝑓3. The
whole dataset 𝑁 is not used to calculate the gradient because it is too slow and often
too large to fit into memory. Furthermore, DNNs benefit from using small batches
𝑛 to approximate the gradient because the added stochasticity lets the minimization
escape saddle points and local minima [22]. Usually DNNs are trained on graphical
processing units (GPUs), specialized computer hardware for fast and parallelizable
linear algebra operations.
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3.1.2 Validation and model selection

DNNs typically have on the order of millions, sometimes billions [26], of trainable
weights w. The number of weights is often higher than the number of training ex-
amples, making overfitting the labelled dataset likely. This is the central challenge
of machine learning: the algorithm must perform well on new inputs, not just those
in the training dataset. To ensure model generalization to unseen examples, part of
the training data is set aside for validation. The trainable weights w are not trained
on these examples. DNNs come with a number of additional model parameters –
hyperparameters – that can be adjusted to improve model generalization; examples
include the learning rate 𝜖 , the neural network architecture (type and number of lay-
ers) and any regularization. During training, the DNN is evaluated on the validation
examples to tune the hyperparameters. This process is known as model selection.

Regularization is an important hyperparameter for improving model generaliza-
tion. In exactly the same way as linear models can be regularized, for example in
ridge regression, one can regularize a DNN by adding a penalty on the weights w to
the loss function. A common example is L2 regularization:

𝐿 (w) ∝ _‖w‖2 +
𝑁∑︁
𝑖=1
‖𝑦𝑖 − �̂�(𝑥𝑖 |w)‖2. (26)

The additional term restricts the model space by encouraging the weights w to be
close to zero. The hyperparameter _ can be tuned to maximize generalization on the
validation examples. This type of regularization is equivalent to a Gaussian prior
on the weights with mean zero. By restricting the model space, regularization helps
prevent overfitting and improves generalization when _ is appropriately tuned.

3.2 Convolutional Neural Networks

Some DNNs have specialized layer functions that provide an inductive bias helpful
for specific inputs. Convolutional neural networks (CNNs) [27] were designed for
processing inputs that have neighbouring position correlations, for example 2D
images, where adjacent pixel values are often correlated, or 1D time series where
adjacent time points are often correlated. CNNs use layer functions that apply a
convolution to the input. The convolution kernel function is learned during training.
This kind of layer function is invariant under translation of the input, an important
prior for working with image data. CNNs have revolutionized image processing and
computer vision applications since winning the Imagenet benchmark competition in
2012 [19]. (Paragraph and plot of convolution here maybe)

Recently, a certain class of CNNs called residual networks (ResNets) have
achieved state-of-the-the-art results in multiple image benchmark tasks [28]. ResNets
introduce ’skip’ connections between certain layers that allow the CNN to ignore the
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layers in between. This alleviates many of the difficulties in training extremely deep
neural networks.

3.3 Multitask learning

So far, only DNNs with single objectives and outputs have been considered. How-
ever, DNNs can be trained to solve multiple tasks at once, producing a vector of
outputs. Solving multiple tasks at once often performs better than solving each task
individually. This is partly because multiple tasks have a regularizing effect on each
other, penalizing model complexity and overfitting on any single task leading to
better overall model generalization [29]. Moreover, since each task shares the same
input representation, e.g., an image, the features learned for a single task can help
the others train faster and better.

In a multitask learning setting, the loss function includes the terms for each
individual task. For example, in regression with three tasks and an MSE loss for
each

𝐿 (w) ∝
𝑁∑︁
𝑖=1
‖𝑦1
𝑖 − �̂�1 (𝑥𝑖 |w)‖2+𝛼

𝑁∑︁
𝑖=1
‖𝑦2
𝑖 − �̂�2 (𝑥𝑖 |w)‖2+𝛽

𝑁∑︁
𝑖=1
‖𝑦3
𝑖 − �̂�3 (𝑥𝑖 |w)‖2, (27)

where the DNN outputs concatenated vector ( �̂�1, �̂�2, �̂�3). The relative size of each
task loss term is controlled by the hyperparameters 𝛼, 𝛽. As usual, these hyperpa-
rameters should be tuned to maximize the model performance on unseen examples.
More often in multitask learning, each task has a different form of loss function.

3.4 Uncertainty quantification

Once trained, DNNs can achieve state-of-the-the-art prediction accuracy in many do-
mains. However, these models cannot capture the uncertainty inherent in their predic-
tions. Predictive uncertainty quantification can be crucial, especially in applications
where the real-world data distribution differs from the training data distribution. In
this scenario, DNNs can extrapolate, producing overconfident but highly inaccurate
predictions sometimes with disastrous consequences [30]. Predictive uncertainty is
best represented by a posterior distribution on the predicted parameters given the
inputs, however, simply quoting the variance of the posterior, often assumed to be
Gaussian, is common practice.

There are two germane types of uncertainty one can model [31]. Aleatoric uncer-
tainty captures noise inherent in the data. This is equivalent to statistical uncertainty
or unexplained variance. On the other hand, epistemic uncertainty accounts for un-
certainty in the model parameters – uncertainty which captures our ignorance about
which model generated our collected data. This uncertainty can be reduced given the
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appropriate choice of model or enough data, and is often referred to as model uncer-
tainty, systematic uncertainty or explained variance. More explicitly [32], training
a model �̂� = 𝑓 (x) to approximate 𝑦 = 𝑓★(x) + 𝜖 , where the statistical noise 𝜖 is
normally distributed 𝜖 ∈ N (0, 𝜎2

𝑎), the expected error is

E‖𝑦 − �̂�‖2 = E‖𝑦 − 𝑓★(x) + 𝑓★(x) − 𝑓 (x)‖2

= E‖𝑦 − 𝑓★(x)‖2 + E‖ 𝑓★(x) − 𝑓 (x)‖2

= 𝜎2
𝑎 + 𝜎2

𝑒 ,

(28)

where 𝜎2
𝑎 and 𝜎2

𝑒 are the aleatoric and epistemic errors, respectively. Cross terms
in eq. 28 go to zero since 𝜖 is independent of 𝑦 and �̂�. Eq. 28 highlights how
epistemic uncertainties arise from a systematic difference between the true and
learned models, while aleatoric uncertainties are irreducible statistical fluctuations
about the true model.

Aleatoric uncertainties can be further broken down into two types: homoskedastic
and heteroskedastic uncertainties. Homoskedastic uncertainties are the same for
all inputs, whereas heteroskedastic uncertainties depend on the input x, so 𝜖 ∈
N (0, 𝜎2

𝑎 (x)). Almost all real data has heteroskedastic uncertainty; some examples
are better measured than others. Photoelectron tracks are extremely heteroskedastic.

Uncertainty quantification in DNNs is a quickly developing field with many pos-
sible approaches. Modelling aleatoric uncertainties is simpler and a similar method
is shared between approaches. This involves training the DNN to predict its own
aleatoric uncertainty by enhancing the loss function. The next section, §3.4.1, pro-
vides a concrete example. Epistemic uncertainty is more difficult to quantify since it
usually involves sampling over different models. Bayesian neural networks [31] do
this by randomly subsampling the trained DNN weights w and making multiple pre-
dictions, while deep Gaussian processes [33] or mixture density networks [32] model
the epistemic uncertainty intrinsically. For practical applications, which require ro-
bust and scaleable uncertainty predictions as well as high prediction accuracy, deep
ensembles [34] are the state of the art [35].

3.4.1 Deep ensembles

Deep ensembles are made up of an ensemble of individual DNNs, each trained
independently on the same dataset to predict the desired output features. Different
random initializations of the same NN at the start of training leads to widely different
prediction functions [37]. Deep ensembles exploit this property by incorporating the
results of many differently initialized NNs, increasing the diversity of predictors.
This not only yields higher prediction accuracy, but also allows for state-of-the-art
aleatoric and epistemic uncertainty quantification [38, 35].

To model the aleatoric uncertainty in a regression task, each individual DNN
composing the ensemble is trained to minimize the following negative log-likelihood
loss function over all training examples 𝑖 [34]
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Fig. 9 Toy regression problem using a deep ensemble. Right panel shows individual DNN prediction
functions. Left panel gives the estimated epistemic uncertainty of the deep ensemble. Figure from
[36].

𝐿 (𝑦𝑖 | x𝑖) =
log(�̂�2 (x𝑖))

2
+
‖𝑦𝑖 − �̂�(x𝑖)‖22

2�̂�2 (x𝑖)
. (29)

The DNN predicts the aleatoric uncertainty �̂�𝑎 for each example prediction, as
well as the example label �̂� as in standard DNN regression, eq. 21. This form
of loss function assumes the aleatoric error has a Gaussian distribution, usually
a reasonable approximation. In practice the DNNs are trained to predict the log
variance 𝑠(x𝑖) = log(�̂�2 (x𝑖))

𝐿 (𝑦𝑖 | x𝑖) =
𝑠(x𝑖)

2
+
𝑒−𝑠 (x𝑖) ‖𝑦𝑖 − �̂�(x𝑖)‖22

2
(30)

since this is more numerically stable [31].
During model prediction, predictions from all DNNs composing the ensemble

are combined. The final predicted label is the mean over the ensemble predictions.
For an ensemble with 𝑀 DNNs �̂�(x) = (1/𝑀)∑𝑀

𝑗=1 �̂�
𝑗 (x). Similarly, the final

aleatoric uncertainty is given by �̂�2
𝑎 (x) = (1/𝑀)

∑𝑀
𝑗=1 �̂�

2
𝑎 (x) 𝑗 . The variance of the

label predictions �̂� 𝑗 over the ensemble is used to model the epistemic uncertainty,
resulting in total predicted uncertainty

�̂�2 (x) = �̂�2
𝑎 + �̂�2

𝑒

�̂�2 (x) = 1
𝑀

𝑀∑︁
𝑗=1

�̂�2
𝑎 (x) 𝑗 +

1
𝑀

𝑀∑︁
𝑗=1

[
�̂� 𝑗 (x) − 1

𝑀

𝑀∑︁
𝑗=1

�̂� 𝑗 (x)
]2
.

(31)

Very few DNNs are needed in the ensemble, 𝑀 ≈ 5 − 10, for the method to achieve
state-of-the-art uncertainty quantification [34]. Figure 9 visualizes the epistemic
uncertainty prediction for a toy regression problem. In the area far from the training
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examples, the DNNs composing the ensemble strongly disagree in their predictions,
giving a high epistemic uncertainty.

In multitask problems, the aleatoric uncertainties can actually replace the hy-
perparameters that determine the relative importance of individual tasks in the loss
function [39]. The DNNs automatically tune their own hyperparameters by learning
the aleatoric uncertainties during training.
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4 Neural networks for track reconstruction

Track reconstruction is an image input, multi-output regression problem §2.1. From
a machine learning perspective, this problem is perfectly suited to a multitask CNN
approach. CNNs learn translation invariant representations §3.2, an important con-
straint for working with image inputs, and a multitask approach is not only more
computationally efficient but also likely to improve the individual task performances
§3.3. In practice, a deep ensemble of CNNs is better than a single CNN for track
reconstruction:

• An ensemble of models provides better predictive performance and generaliza-
tion, §3.4.1.

• Trustworthy uncertainty quantification will be important for the next step: polar-
ization estimation, §5.

• Deep ensembles provide automatic hyperparameter tuning of individual task
importance for the multitask loss function, §3.4.1.

Some authors [11] have argued for an end-to-end deep learning approach to
polarization estimation that combines track reconstruction with polarization estima-
tion into one huge supervised learning problem to go directly from a set of tracks
to source polarization. Although initially attractive because one could use source
polarization directly as the neural network learning signal, avoiding the need for
simulated detector events, this approach is difficult. Training would be costly (per-
haps infeasible) since many individual events would be required for a single training
example. Moreover, the observer may wish to adjust partitioning of the data set into
e.g., time, energy, and spatial subsets, with differing polarization. The best partition
will often not be obvious before the analysis starts, thus combining the properties
of individual tracks allows a more efficient exploration of binning options. Finally
detector-dependent artifacts can best be handled from individual tracks (with fine
spatial positioning), rather than point spread function (PSF) weighted groups of
tracks.

The neural network approach presented in this section and the next splits imag-
ing X-ray polarimetry into two mostly separate data analysis steps, as described in
§2. This section describes step 1, track reconstruction §2.1: extracting the relevant
features (emission angles, absorption points, energies, and their associated uncer-
tainties) from photoelectron track images as well as possible. This section follows
the current state-of-the-art deep ensemble approach for track reconstruction taken
by [12, 40].

4.1 Dataset

In any supervised learning problem, a dataset of labelled examples is an essential
first step, without this, training a model is not possible. In the case of track recon-
struction, one needs photoelectron track images labelled with known photoelectron
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2D emission directions, 2D absorption points on the detector grid and scalar photon
energies. Unfortunately, these labelled events cannot be collected from the detector
in the lab so must be simulated. Most telescope detectors have event simulators to
study detector performance; for example, IXPE has a GPD Monte Carlo event sim-
ulator built in GEANT4 [41] as part of its software suite. In any application where
simulated data is used to train a machine learning model, care must be taken to make
sure the simulated training data truly matches the real data the algorithm is likely
to see. Systematic difference between the two is known as covariate shift and can
cause reductions in prediction accuracy and uncertainty quantification on real data
compared to the simulated data. In the case of IXPE, simulated events have been
rigorously verified to match with real lab-collected detector events [8] at the expected
telescope settings, including photons absorbed outside the gas volume §2.1.4. For
IXPE trained neural network approaches, the performance on polarization estimation
for simulated events generalizes to real detector data [12, 40], suggesting minimal
covariate shift.

Once labelled photoelectron track events can be reliably simulated for the X-ray
polarimeter of choice, one needs to choose the amount and type of training and testing
data to be simulated. For IXPE’s GPDs, [12, 40] use a training set of approximately
3.3 million tracks simulated uniformly for an unpolarized source between 1 - 11keV,
for performance across a broad spectrum. They keep separate an additional 200k
simulated tracks for validation and testing. The energy distribution of the training set
does not make much difference to track reconstruction or polarization prediction, so
long as no energies are greatly underrepresented nor labeled energy bins significantly
larger than the energy resolution. An unpolarized source is simulated to make sure
emission angles are uniformly distributed, so as not to cause any learning bias. The
next section describes additional data pre-processing necessary for non-square grids.

In general, the larger the DNN (in terms of parameters and layers), the more
data is required for training.

4.2 Geometric bias

Imaging polarimeters like IXPE use hexagonal pixels for two reasons:

1. Hexagonal arrays are the densest possible 2D packing, meaning more pixels per
unit area thus improved track resolution.

2. Hexapolar grid effects are orthogonal to the quadrupolar polarization signal.

The discrete nature of the pixel grid means that track elongations and emission di-
rections are better resolved along some axes of symmetry than others, potentially
creating preferred directions for reconstruction. This bias would only be visible when
the pixel size is significant compared to the track size, i.e., for small, low energy
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Fig. 10 Example square conversions of a 6.4 keV hexagonal track (left panel). The six panels to
the right show shifts along the 120◦ GPD axes; shifting odd rows (upper) or even rows (lower).
For each hexagonal track, CNNs are fed column-wise pairs of square conversions, along with the
energy, absorption point (blue dot) and initial photoelectron direction (blue line) as labels.

tracks. The hexagonal grid used in the IXPE GPDs is designed to minimize any polar-
ization systematics arising from these biases. Although not all imaging polarimeters
use hexagonal pixels, this section describes some potential neural network solutions
for dealing with non-square pixels.

A hexagonal grid is not natively compatible with standard CNN implementations
for square matrices. It is possible to transform from a hexagonal to a square grid,
however a naive transformation can lead to polarization systematics. Polarization es-
timation, step 2 §6, expects unbiased estimators for the emission angles. CNNs learn
to prefer some emission angles over others, possibly interfering with the polarization
signal. In a naive hexagonal to square conversion, emission angle bias happens partly
because the CNN convolutional kernels are not spatially equivariant in hexagonal
space. A possible solution is to work directly with hexagonal convolutions [42], but
[12] describe an expedient method.

4.2.1 Hexagonal to square conversion

It is possible to leverage existing square CNN architectures by using an appropriate
polarization-systematic-free hexagonal to square conversion. From [12]:

There are two main ways of converting between hexagonal and square grids: interpolation
and pixel shifting. Interpolation places a fine square grid on top of the hexagonal image
and interpolates. Interpolation should generally be avoided since it adds noise to the raw
data and is not easily reversible. Pixel shifting rearranges pixels by shifting alternate rows
and then rescaling [42] ... To avoid any polarization bias from the conversion, we pixel
shift each track along each of the six hexagonal axes. Hexagonal tracks are rotated so that
rows align horizontally (this can be done in three different ways, separated by 120◦), then
alternate rows are shifted (this can be done in two different ways, left and right) so that
the track resembles a rectangular grid. We convert the rectangular grid into a square image
by defining the leftmost track pixel and bottom track pixel as the left edge and the base of
the image respectively. A square image size of 50x50 pixels is used to fit all track sizes for
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energies up to 11 keV. Since square track images are defined independently of the absolute
hexagonal coordinate values, the initial hexagonal track rotation can be performed about any
axis.

A single hexagonal track thus produces six square conversions, fig. 10, two for each 120◦
angle. A single training example for the CNNs is formed by stacking the corresponding
square conversion pair, similarly to color channels in a rgb image CNN problem – in this
case with only two channels. At test time all 3 pairs are evaluated by the CNNs and the
predicted angles are rotated back to their original direction.

This approach artificially approximates spatial equivariance of CNN convolution
kernels in the hexagonal space and removes all relevant prediction bias on emission
angles \ (and later 𝑝0, \0) introduced when converting from hexagonal to square
coordinates.

4.3 Deep ensemble setup

The specific CNN model that will compose the deep ensemble has to be chosen before
any training begins. CNN architectures are usually compared by their performance
on natural image classification datasets, like imagenet (224x224 pixels) or CIFAR
(32x32 pixels) [43]. The residual network architecture (ResNet [28]) described in
§3.2 and related architectures like DenseNet [44] became the state of the art for
image processing benchmarks in 2017. [12] use the ResNet-18 CNN architecture
to compose the deep ensemble; this has 18 total layers. The results shown in this
section are using ResNet-18s, but any DNN appropriate for images could be used.
Indeed, as of 2020, transformer architectures [45] have supplanted residual networks
as the latest state of the art in image processing.

During training, each CNN minimizes a loss function. Since track reconstruction
is a multitask problem, the loss function will include multiple terms for emission
angle loss, absorption point loss, and energy loss. The DNNs will also predict
the aleatoric uncertainty on each of its estimates. Each task loss function term is
considered separately and they are all combined at the end of the section.

Emission angles. Since emission angles are periodic, a Gaussian aleatoric uncer-
tainty is inappropriate. Instead of the Gaussian negative log-likelihood (NLL) used
in §3.4.1, the von Mises (VM) distribution NLL is a better loss function choice. This
is the maximum entropy distribution for circular data with specified expectation. For
a random 2D unit vector x

VM(`, ^) ≡ 𝑝(x|`, ^) = exp(^`𝑇 x)
2𝜋𝐼0 (^)

. (32)

where 𝐼0 is the modified Bessel function of the first kind. This can also be considered
a 1D distribution over the polar angle \ of vector x:

VM(\`, ^) ≡ 𝑝(\ |\`, ^) =
exp(^ cos(\ − \`))

2𝜋𝐼0 (^)
. (33)
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The VM distribution is parameterized by concentration parameter ^; for large ^

the VM converges to a Gaussian with variance 𝜎2 = 1/^. For small ^ the VM
converges to a uniform distribution. This more appropriately reflects the distribution
of predictions \̂, which are clearly periodic.

Predicting scalar periodic values directly is tricky for standard DNNs, so the
emission angle \ can be parameterized as a 2D vector v = (cos2\, sin2\). Now
the DNNs attempt to predict the 2D vector v̂ [12]. Only −𝜋/2 ≤ \̂ < 𝜋/2, as
opposed to −𝜋 ≤ \̂ < 𝜋, are required for polarization estimation since the EVPA
−𝜋/2 ≤ \0 < 𝜋/2, i.e. polarization is a quadrupolar signal. However, the full 2𝜋
emission angle can be useful when dealing with systematics and extended source
analysis. If predicting the full 2𝜋 emission angle is necessary, an additional loss term
for v2 = (cos\, sin\) can be included [12]. Predicting only v2 gives very poor results
for low energy tracks because of direction ambiguity, and should be avoided.

Each DNN model in the ensemble computes the emission angle loss for track
image x with true direction \ as the VM NLL

𝐿 \ (v | x) = − ˆ̂𝑎 (v̂.v) + log 𝐼0 ( ˆ̂𝑎). (34)

where ˆ̂𝑎 are the DNN predicted aleatoric VM uncertainties. The epistemic uncer-
tainties can also be assumed to follow VM(0, ^𝑒); ^𝑒 can be estimated from the
output of a deep ensemble with M DNNs {\̂ 𝑗 }𝑀𝑗=1 using the appropriate maximum
likelihood estimator:

�̄�2 =
©« 1
𝑁

𝑀∑︁
𝑗=1

cos 2\̂ 𝑗
ª®¬

2

+ ©« 1
𝑁

𝑀∑︁
𝑗=1

sin 2\̂ 𝑗
ª®¬

2

(35)

𝐼1 ( ˆ̂𝑒)
𝐼0 ( ˆ̂𝑒)

= �̄�, (36)

The total VM predictive error on each track angle \̂ is approximated by summing
the aleatoric and epistemic variances, as in §3.4.1:

1
ˆ̂
=

1
ˆ̂𝑒
+ 1
𝑀

𝑀∑︁
𝑗=1

1
ˆ̂𝑎
𝑗

(37)

Absorption points. To predict the (x,y) photon absorption point coordinates given
a track image x, a simple Gaussian NLL loss function suffices:

𝐿abs (𝑥, 𝑦 | x) =
1
2

log �̂�2
abs +

1
2�̂�abs

 [
𝑥

𝑦

]
−

[
𝑥

�̂�

] 2
. (38)

As in eq.30, the DNN actually predicts the log variance for numerical stability. If
desired, the epistemic error for the absorption point predictions can be calculated in
the same way as §3.4.1.
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Photon energy. Similarly to the absorption point loss eq.38, the energy loss can be
stated as a simple MSE with the aleatoric error included:

𝐿𝐸 (𝐸 | x) =
1
2

log �̂�2
𝐸 +

1
2�̂�𝐸

𝐸 − �̂�
2
, (39)

and like the absorption points, the epistemic error can be calculated over the deep
ensemble as in §3.4.1.

Predicting the energy, while simple at first sight, is more tricky than absorption
points because of tail tracks. The presence of tail tracks, §2.1.4, can cause the DNNs
to produce biased energy estimates �̂� with this loss function. Tail tracks look like
lower energy tracks than their true energy label suggests, and this can lead to two
possibilities:

• If tail tracks are difficult to distinguish from peak tracks this will cause the DNN
to skew its overall predictions upward in energy to minimize eq.39.

• If low energy tail tracks are difficult to distinguish from high energy tail tracks,
then most tail tracks will be assigned the mean energy of the training distribution
as this minimizes the expected value of eq.39. This is usually undesirable for
astrophysical spectra.

In principle these two effects could be remedied in a number of ways, for example
by adjusting the loss function eq.39 [12] or by a careful look at the predicted energy
uncertainty (tail tracks should have much higher uncertainties). In practice, since tail
tracks also affect emission angle reconstruction and by extension polarization esti-
mation, the recommended approach is to remove tail tracks from the analysis to the
greatest extent possible [40]. This works well only if tail tracks are distinguishable
from peak tracks. For IXPE GPD events this is fortunately the case, but a different
approach may be better for other imaging X-ray polarimeters. In §4.4 we describe a
DNN approach to identify and remove tail tracks.

The full DNN loss function to be minimized is now

𝐿 (\, 𝑥, 𝑦, 𝐸 | x) = 𝐿 \ + 𝐿abs + 𝐿𝐸 + 𝛼‖w‖2, (40)

where the final term is an L2 regularization on the DNN weights controlled by
hyperparameter 𝛼, to prevent overfitting the training data. The predicted aleatoric
uncertainties act as automatically tuned hyperparameters for the remaining loss terms
[39]. Given a track image input x, an individual DNN outputs an 8 dimensional vector:
(v̂, ˆ̂𝑎, 𝑥, �̂�, �̂�abs, �̂� , �̂�𝐸 ).

4.4 Removing tail tracks

Photoelectron tracks from events converting outside the main detector gas are known
as tail tracks, §2.1.4. For both DNNs and classical methods they cause problems
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Fig. 11 Example tail events (top row) and peak events (bottom row) for three different recovered
energies. All plots follow the same spatial and color scale. These tail events convert in the GEM.
Color denotes charge deposited in a given detector pixel. Note that tail events are more compact,
short and with high charge density at maximum.

with photon energy prediction, discussed in §4.3. Furthermore, tail tracks have
comparatively high emission angle prediction error (low polarization sensitivity
§2.1.4) and §4.6 will show that this error is not properly captured by deep ensemble
predictive uncertainties. One possible approach to remedy the tail track issue is to
attempt to excise tail tracks from the data analysis entirely.

For IXPE’s GPDs, tail tracks differ in morphology from peak events converting
in the gas. Fig. 11 compares events with the same linearly recovered energy (largely
determined through the summed pixel counts, the summed energy deposition in the
gas). Since the GEM and window material have a lower mean free path for photo-
electrons, detected tail events are typically due to photo-electrons ejected close to the
GEM/window normal. Their tracks are thus more compact, with higher counts/pixel
for the same recovered energy. Window events have larger drift diffusion than GEM
conversions. Distinguishing peak and tail tracks can be formed as a computer vision
classification problem, so a DNN would be a good model choice and could be trained
on simulated events to recognize the differences.

A good approach for peak vs. tail track classification would be to include the
classification task into the existing track reconstruction deep ensemble, §4.3. This
would likely improve performance over training a separate model and at first glance
would only require an additional loss term in eq.40. However, this approach would
not fix the problem of improper energy predictions and emission angle uncertainties
unless more complex cross terms to eq.40 were also added. The cross terms would
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Fig. 12 Mean squared error
on emission angle prediction
as a function of photon energy,
measured using eq. 41, for the
classical moment analysis and
deep ensemble.
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ensure, for example, that tracks likely to be tail events have higher energy uncertainty.
Opting for a simpler approach, [40] trained a separate peak vs. tail classifier DNN
and used only peak tracks to train the track reconstruction deep ensemble. The
[40] separation approach is described in this section, but a unified deep ensemble
approach to tail vs peak classification would likely work better and is discussed as a
future direction in §6.

Setting up a peak vs. tail DNN classification model is the same as setting up a
multitask deep ensemble §4.3, only now the loss function to be minimized is different.
In binary classification tasks, DNNs minimize the cross-entropy loss, eq.22. Given
a single input, a DNN outputs a single scalar between 0 and 1 that represents the
probability an input is the first class. [40] use exactly the same ResNet-18 architecture
and data preprocessing, §4.1–4.2, when training the peak vs. tail classifier DNN; the
only notable differences are the loss function and data labels.

4.5 Training and ensemble selection

Individual DNN training procedures should follow the guidelines in §3.1.1, §3.1.2.
Specifics will depend on the particular DNN architecture chosen. CNNs for com-
puter vision problems train particularly well using stochastic gradient descent with
momentum [46] as the optimization algorithm. Normalizing the inputs and outputs
before training typically helps improve convergence. From [12]:

The ResNet-18 architecture trains in a reasonable amount of time (∼ 15 hours for 150 epochs
on 4 Nvidia Titan GPUs, using a batch size of 2048). Before training, we normalize the
track images, subtracting the pixel-wise mean from each track image and dividing by the
pixel-wise standard deviation (where the mean and standard deviation are calculated over
the full training set). The track energy and absorption point labels are similarly processed.
Normalizing the training data helps prevent vanishing and exploding gradients during the
NN training procedure and lead to faster convergence. We use stochastic gradient descent
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Fig. 13 Emission angle recovery for unpolarized, 𝑝0 = 0, (left two panels) and 100% polarized,
𝑝0 = 1, (right two panels) simulated IXPE data for 4.0 and 7.0 keV. The true photoelectron angle
distribution is shown in black; standard moment analysis reconstruction is in blue and deep ensemble
in red.

with momentum as our optimizing algorithm, typical in computer vision tasks [46], with a
stepped decaying learning rate starting at 0.01. We choose batch sizes of 512, 1024, 2048
tracks ... We tune the hyperparameters to minimize the MSE for the validation set.

Once multiple DNNs are trained with optimized hyperparameters, individual DNNs
should be chosen at random to compose the ensemble. This ensures accurate epis-
temic uncertainty estimates.

4.6 Performance

The performance of deep ensembles in track reconstruction is compared to the
classical moment analysis §2 on simulated IXPE data. The results shown are for
peak events only unless otherwise specified.

Emission angles. Two important measures of performance should be evaluated for
emission angle recovery: the accuracy of recovery and the quality of uncertainty
estimates. The accuracy of emission angle recovery can be measured, for example,
by the MSE on a test dataset

1
𝑁

𝑁∑︁
𝑖=1
‖v𝑖 − v̂𝑖 ‖2. (41)

Fig. 12 gives the above MSE as a function of the true track energy on an unpolarized
IXPE test dataset for both classical moment analysis and deep ensemble approaches.
At low energies, deep ensembles fail to improve significantly over the moment
analysis; when resolution is low, track image moments contain all the relevant
information.

It is also essential to confirm that the estimates \̂ are unbiased. Fig.13 gives the
distribution of emission angles \̂ recovered by the deep ensemble and moment anal-
ysis for an unpolarized and polarized source at various energies. For both methods,
emission angle estimates show no systematic biases, and at higher energies for the
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polarized source the improved signal recovery of the deep ensemble is visible. As
an additional check, the bottom row of fig. 14 displays the distribution of \̂ − \ for
the moment analysis and deep ensemble at three different true energies. Both the
moment analysis and deep ensemble have symmetric error distributions centered
at zero for all energies. At higher energies, the lower dispersion and thus higher
accuracy of the deep ensemble is again clear.
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Fig. 14 Top: Histograms of the DNN emission angle residual for three different DNN predicted
aleatoric VM concentration parameters ˆ̂𝑎 . The DNN predicted VM error distributions are over-
plotted. The DNN is able to correctly predict its emission angle aleatoric error distribution. Bottom:
Histograms of emission angle residuals at three different energies for DNNs and the moment
analysis. All methods are unbiased (centered at zero) and at higher energies the DNNs have better
recovery of the true emission angle \ , as evidenced by the larger peak heights.

A simple way to assess the deep ensemble predicted uncertainty estimates ˆ̂ is
to consider the distribution of \̂ − \ for fixed ˆ̂. According to the assumptions in
§4.3, \̂ − \ should follow a VM(0, ˆ̂) if the DNNs have been properly trained. In the
top row of fig. 14, the distributions of \̂ − \ for three different fixed ˆ̂ are displayed
with VM(0, ˆ̂) overlayed. In all cases, the distributions match very closely. Epistemic
errors are negligible for the vast majority of peak tracks, suggesting good model
choice and training convergence.

It is also instructive to visualize the distribution of deep ensemble predicted un-
certainties as a function of energy, fig. 15. For higher energies a wider range of
concentration parameters are predicted and the ˆ̂ peak moves progressively higher.
Below 2keV, barely any polarization signal is recoverable with IXPE. Fig. 15 high-
lights the strong heteroskedasticity in imaging X-ray polarimetry.
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For a deep ensemble trained on both peak and tail tracks, the predicted uncertain-
ties for tail tracks are untrustworthy. Comparing the error distributions in fig. 16 to
14, tail track error is not captured by deep ensemble uncertainty predictions, even
with the epistemic uncertainty included. Furthermore, at low energies, tail track
emission angle estimates are potentially biased.

Tail vs. peak classification. For tail vs. peak classification, there is no equivalent
classical method to compare the DNN performance, so this section lists the classi-
fication results achieved by [40]. They use the predicted tail probability as an event
threshold cut. Fig. 17 shows the effectiveness of different tail probability cuts. If all
events with a DNN predicted tail probability higher than 70% are removed, a loss of
only 3% of true peak events is incurred while 66% of true tail events are successfully
removed. Using a DNN classifier, only a small loss to signal events need be incurred
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Fig. 16 Histograms of the emission angle residual at three different DNN predicted concentration
parameters ˆ̂ for tail events only. The predicted DNN error distributions are overplotted. When tail
events are treated as if they were normal events, the DNNs do not learn to predict the appropriate
uncertainties.
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Fig. 17 Left: The solid curve shows the fraction of peak events retained as a function of the tail
probability cut, while the dashed curve shows the fraction of the cut sample from the remaining tail
events. Insets show the confusion matrices, normalized by column, for our adopted 70% cut and a
35% cut. Right: The top curves show the peak retention as a function of energy (black solid – 70%
cut, red dot-dash – 35% cut). Below, the dotted curve shows the uncut fraction of the sample due
to tail events, while the lower black and red curves show the residual tail pollution (70% and 35%
cut, respectively). Depending on how harmful tail events are to the desired measurements, different
cut levels could be appropriate.

to remove the majority of harmful tail events. Fig. 17 also shows how remaining tail
and peak events are distributed in terms of true energy after a tail probability thresh-
old cut. Remaining tail events come from all energies in proportion to their original
population, while misidentified peak events come from middle energies where peak
and tail events overlap most.

At least for IXPE GPDs, it is certainly possible to meaningfully distinguish
between tail and peak events. The upcoming section on photon energy recovery and
§6 demonstrate how tail cuts based on DNN probabilities can be used to improve
energy and polarization resolution.

Absorption points. Absorption point accuracy can be evaluated using the MSE. In
fig. 18 the classical moment analysis and deep ensemble predictions are compared at
different photon energies. For IXPE, the track barycenter provides a better prediction
of the absorption point for very low energies – the deep ensemble recovers this
transition while the moment analysis does not.

For current generation X-ray polarimeters like IXPE, the telescope PSF is much
larger than any absorption point discrepancy, so absorption point accuracy is less
essential than emission angle or photon energy accuracy. However, future missions
with higher spatial resolution may require very accurate absorption point estimates
for detailed imaging of extended sources.

Photon energy. Energy recovery can be adversely affected by tail events. While the
MSE in predicted energy is lower for deep ensemble methods compared to classical
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Fig. 18 Photon absorption
point localization accuracy
using the root mean squared
error. The deep ensemble pre-
dictions (red) do appreciably
better than the moment analy-
sis and matches a barycenter
estimate at the lowest ener-
gies. For IXPE, all methods
are adequate, as localization
is much better than the size
of the point source image
produced by IXPE’s mirrors.
One quarter of IXPE’s half
power diameter is illustrated
(black dotted line).
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linear charge recovery, these results should be treated with caution. Much of this
improvement is specious, coming from a mistreatment of tail events. Fig.19 plots
the IXPE recovered energy histograms of the classical linear method (blue), a deep
ensemble trained including tail events (black) and a deep ensemble trained on only
peak events with tail events removed at a 70% peak vs. tail classifier probability (red).
Around the true energy peak all methods perform similarly, with a slight advantage
for the DNN based methods. As the energy increases, all methods show a low energy
tail in reconstructed energy which is produced by tail events. The standard deep
ensemble that does not differentiate peak and tail tracks also shows a high energy
tail in reconstructed energy. This tail arises from low energy peak events ’looking’
like higher energy tail events, so pushing some events up to higher energy tends to
minimize the MSE. As discussed in §4.3, high energy tails in reconstructed energy
are undesirable for astrophysical spectra. Training a deep ensemble with only peak
events prevents this high-energy tail behavior.

Cutting events based on the predictions of the peak vs. tail classifier successfully
reduces tails in the recovered energy histograms. A tail event cut improves the
energy resolution at the cost of potentially losing some peak events and thus some
polarization signal. §5.3 will discuss and quantify the polarization signal loss due to
tail event cuts.

The energy prediction accuracies (mean absolute error and FWHM) for all three
methods as a function of photon energy are given in fig. 20. Removing tail events
provides a significant improvement to the energy prediction accuracy.
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Fig. 19 Response for three true energies. Note that while the P21 analysis suppressed the large
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Fig. 20 Left: Mean absolute error in predicted energy as a function of true energy. Right: FWHM
(3.46×Median Absolute Deviation) of predicted energy distribution for a source at energy E. The
grey band marks the limiting energy resolution in the purely-exponential multiplication regime. NNs
with 70% tail cut performs better on every metric, more accurate per track and tighter resolution at
all energies. All methods suffer from the large increase of tail events above 9 keV.

5 Neural networks for polarization estimation

§2.2 explained how to best estimate polarization parameters (𝑝0, \0) given a group of
reconstructed photoelecton emission angles {\̂𝑖}𝑁𝑖=1. This section explains how to best
estimate polarization parameters given a group of reconstructed photoelecton emis-
sion angles and their associated uncertainties {\̂𝑖 , ˆ̂𝑖}𝑁𝑖=1. These uncertainties can
vary for different individual emission angles; the measurements are heteroskedastic.
Emission angles with larger uncertainties should contribute less to the final po-
larization parameter estimates. In theory, this section need not use DNNs and the
methods described can be used for any track reconstruction method that provides
(trustworthy) emission angle uncertainties; the uncertainties can be parameterized
by any appropriate distribution. In practice, the predicted emission angle uncertain-
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ties come from deep ensembles and the uncertainties are assumed to follow a von
Mises family of distributions.

5.1 Modulation factor

To develop a polarization estimation method that incorporates emission angle uncer-
tainties, it is essential to specify how these uncertainties affect the recovered emission
angle distribution eq. 2. For a source with polarization parameters (𝑝0, \0), the true
photoelectron emission angles follow the distribution eq. 2, while the recovered or
measured emission angles follow eq. 3. The difference between the two is captured by
the modulation factor `. The modulation factor summarizes the effect of uncertainty
in individual emission angle measurements.

Consider a single emission angle measurement \̂𝑖 . Since track reconstruction
methods are imperfect and contain sources of error (even DNN based ones as was
shown in §4), \̂𝑖 can be considered a random variable:

\̂𝑖 = \𝑖 + 𝜖𝑖 (42)

where \ is the true emission angle, which follows the distribution eq. 2, and the
measurement error 𝜖𝑖 is a random variable with

E[𝜖𝑖] = 0,Var[𝜖𝑖] = 𝜎2
𝑖 , 𝑝(𝜖𝑖 = 0) = 𝑝(𝜖𝑖 = 2𝜋) (43)

This assumes the \̂𝑖 estimate is unbiased; reasonable given both the deep ensemble
and moment analysis in §4.6 are for the most part unbiased estimators. The specific
distribution for 𝜖𝑖 will depend on the track reconstruction method, but all distributions
should follow the properties in eq. 43: be unbiased, have a finite variance, and be
periodic, since \̂ itself is periodic.

For any 𝜖𝑖 distribution with the above properties, it is possible to find the distri-
bution for \̂𝑖 as the convolution of the \𝑖 , 𝜖𝑖 distributions:

𝑝(\̂𝑖 | 𝑝0, \0, 𝜎
2
𝑖 ) =

1
2𝜋

(
1 + `𝑖 𝑝0 cos[2(\̂𝑖 − \0)]

)
, (44)

where 0 ≤ `𝑖 ≤ 1, `𝑖 (𝜎2
𝑖
) and `𝑖 (𝜎2

𝑖
= 0) = 1. In other words, the distribution of

estimators \̂𝑖 are the same as the distribution of the true values \𝑖 but with a reduced
individual modulation factor `𝑖 (𝜎2

𝑖
) that depends on the measurement error 𝜎2

𝑖
. The

measurement noise will blur the sinusoidal modulation signal by a factor `𝑖 for the
specific event 𝑖.

The final distribution for a set of recovered emission angles {\̂𝑖}𝑁𝑖=1 can now be
simply formulated as an equal mixture model of the distributions of all individual
recovered emission angles, eq.44:
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𝑝(\̂ | 𝑝0, \0) = 1
𝑁

∑𝑁
𝑖=1

1
2𝜋

(
1 + `𝑖 𝑝0 cos[2(\̂ − \0)]

)
, (45)

= 1
2𝜋

(
1 +

( 1
𝑁

∑𝑁
𝑖=1 `𝑖

)
𝑝0 cos[2(\̂ − \0)]

)
, (46)

= 1
2𝜋

(
1 + `𝑝0 cos[2(\̂ − \0)]

)
. (47)

Thus, the final modulation factor of a set of emission angles with varying individual
measurement errors {\̂𝑖 , 𝜎2

𝑖
}𝑁
𝑖=1 is an average over all individual modulation factors

` =
1
𝑁

𝑁∑︁
𝑖=1

`𝑖 (𝜎2
𝑖 ), (48)

where individual modulation factors each depend on the individual measurement
errors 𝜎2

𝑖
.

For a specific example of an individual modulation factor, consider the case where
𝜖𝑖 is VM(0,^𝑖) between [0, 𝜋]. This is the uncertainty distribution learned by the deep
ensembles in §4.

𝑝(𝜖𝑖) =
1

2𝜋𝐼0 (^𝑖)
exp(^𝑖 cos 2𝜖𝑖). (49)

This distribution meets all the assumptions stipulated in eq. 43. Evaluating the
convolution of the \ (eq.2) and 𝜖 (eq.49) distributions, one finds

𝑝(\̂𝑖 | 𝑝0, \0, ^𝑖) =
1

2𝜋
(
1 + 𝐼1 (^𝑖)

𝐼0 (^𝑖)
𝑝0 cos[2(\̂𝑖 − \0)]

)
. (50)

Comparing to eq. 44

`𝑖 =
𝐼1 (^𝑖)
𝐼0 (^𝑖)

, (51)

and the modulation factor for set of tracks {\̂𝑖 , ^𝑖}𝑁𝑖=1 is

` =
1
𝑁

𝑁∑︁
𝑖=1

𝐼1 (^𝑖)
𝐼0 (^𝑖)

, (52)

5.2 Weighted maximum likelihood estimator

In §2.2, it was assumed when estimating polarization parameters that the modulation
factor is a constant, `. The previous section showed how the modulation factor
arises from the measurement errors of many individual emission angle estimates. If
individual uncertainties are known, rather than assuming these lead to one constant
`, individual modulation factors can be directly incorporated into the likelihood
function for the polarization parameters.

With individual emission angle measurement errors known, the likelihood eq. 11
can be expressed as a more informative likelihood:
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𝐿 ({\̂𝑖}𝑁𝑖=1 | Q,U) =
𝑁∏
𝑖=1

1
2𝜋

(
1 + Q`𝑖 cos 2\̂𝑖 + U`𝑖 sin 2\̂𝑖

)
. (53)

Now each estimated emission angle \̂𝑖 comes with its own individual modulation
factor `𝑖 , as opposed to a global `. This likelihood can be maximized in exactly
the same way as eq. 11. Following §2.2, assuming |Q`𝑖 | << 1, |U`𝑖 | << 1, the
maximum likelihood estimators for Stokes’ parameters (Q,U) are now

Q̂ =
2∑𝑁
𝑖=1 `

2
𝑖

𝑁∑︁
𝑖=1

`𝑖 cos 2\̂𝑖 , (54)

Û =
2∑𝑁
𝑖=1 `

2
𝑖

𝑁∑︁
𝑖=1

`𝑖 sin 2\̂𝑖 . (55)

Following the notation in [14] and [40], one can define the individual event weights

𝑤𝑖 = `𝑖 (56)

and the total modulation factor (now a weighted average)

` =

∑𝑁
𝑖=1 𝑤𝑖`𝑖∑𝑁
𝑖=1 𝑤𝑖

=

∑𝑁
𝑖=1 𝑤

2
𝑖∑𝑁

𝑖=1 𝑤𝑖
. (57)

Then eqs.54,55 are

Q̂ =
2

`
∑𝑁
𝑖=1 𝑤𝑖

𝑁∑︁
𝑖=1

𝑤𝑖 cos 2\̂𝑖 , (58)

Û =
2

`
∑𝑁
𝑖=1 𝑤𝑖

𝑁∑︁
𝑖=1

𝑤𝑖 sin 2\̂𝑖 . (59)

Now when estimating the polarization parameters, each event is weighted by its ex-
pected signal 𝑤𝑖 = `𝑖 . As in §2.2, [14] derive the posterior distribution for estimators
eqs. 58,59. The posterior distribution in the weighted case is the same as eq.17 but
now 𝑁 is replaced with

𝑁eff =

( ∑𝑁
𝑖=1 𝑤𝑖

)2∑𝑁
𝑖=1 𝑤

2
𝑖

, (60)

the effective number of events. Because the posterior distribution has changed, now

MDP99 =
4.29

`
√
𝑁eff

. (61)

Weighting events reduces the total number of events contributing to a measurement
of the polarization parameters, making

√
𝑁eff smaller, but it increases the modulation

factor ` by more. Overall the MDP99 is reduced, improving the polarization measure-
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Fig. 21 Modulation factor
or optimal event weight as
a function of von Mises
concentration parameter ^ . Th
function is monotonic, higher
concentration parameters are
always weighted more.
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ment. Since 𝑤𝑖 = `𝑖 is the maximum likelihood estimator, this is the optimal event
weighting scheme. It is also possible to arrive at this conclusion in reverse: start-
ing with weighted estimators eq. 58,59 and MDP99, eq.61, [40] prove that 𝑤𝑖 = `𝑖
minimizes the MDP99, or equivalently maximizes the signal-to-noise ratio.

5.2.1 Deep ensembles

A DNN approach to track reconstruction using deep ensembles gives accurate es-
timates of individual VM uncertainties ^𝑖 , §4.6. If measurement uncertainties are
VM, individual modulation factors are given by eq. 51. Then, for a set of deep en-
semble predicted emission angles and uncertainties, {\̂𝑖 , ˆ̂𝑖}𝑁𝑖=1, weighted maximum
likelihood estimators for the polarization parameters eq. 58,59 should use

𝑤𝑖 = `𝑖 =
𝐼1 ( ˆ̂𝑖)
𝐼0 ( ˆ̂𝑖)

. (62)

Fig. 21 plots the optimal weighting (or equivalently, the modulation factor) as a
function of ^. As expected, 0 ≤ `𝑖 ≤ 1 and an increasing concentration parameter ^
(decreasing uncertainty) always increases the event weight.

5.3 Performance

It is now possible to compare the full polarimetery data analysis pipeline for a DNN
approach with the classical moment analysis. Track reconstruction, step 1 of the
pipeline, has already been compared in §4.6; this section will reveal how both track
reconstruction improvements and uncertainty estimation affect polarization recovery.
The quality of polarization recovery is measured by the MDP99, eq.61.
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Fig. 22 Measured ` as a func-
tion of deep ensemble event
weight 𝑤 for large test data
sets of 1 − 10keV simulated
events. Each ` bin contains
20,000 individual track events.
Closed circles represent a PL1
source (𝑑𝑁 /𝑑𝐸 = 𝐸−1) con-
volved with IXPE’s effective
area, open circles a flat spec-
trum. Spectra with tail event
cuts applied are in black, and
full spectra in red.
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5.3.1 Weights

Before comparing methods, it is important to confirm that individual modulation
factors `𝑖 (or weights 𝑤𝑖) predicted by the deep ensemble for each event, eq.62, are
accurate. This can be checked by observing a 100% polarized source and grouping
events with same predicted `𝑖 , then empirically measuring the modulation factor `
of the group with eq.8. The measured and predicted ` should always match.

Fig. 22 gives the measured modulation factor ` as a function of deep ensemble
predicted weights 𝑤𝑖 = `𝑖 for two polarized IXPE datasets with 1.5×106 events. Any
deviation from 𝑦 = 𝑥 means the deep ensemble predicted uncertainties are imperfect.
When most tail events are removed using a DNN tail cut, §4.4, the deep ensemble
predicted weights are close to perfect and show minimal spectral dependence. If tail
events are allowed to remain in the spectrum, deep ensemble weights stray from the
optimal MLE for highly weighted events. This is because it is difficult for the deep
ensemble to learn the appropriate uncertainties ˆ̂ for tail events, §4.6. The effect is
reduced for the PL1 spectrum where there are fewer high energy events and thus
fewer tail events.

5.3.2 Comparison

To expose which parts of the DNN approach are providing the biggest MDP99
improvements, table 1 gives the performance breakdown of the different components
of the deep ensemble approach. The test datasets are inspired by realistic astrophysical
spectra convolved with IXPE’s effective area, to give an idea of realized instrument
improvements when using DNNs. Since the absolute MDP99 values are specific to
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Spectrum Method MDP99(%)

PL2 Mom. 5.36 ± 0.03
Mom. w/ Ellip. weights 4.89 ± 0.03
DNN 5.10 ± 0.03
DNN w/ wts. 3.99 ± 0.02
DNN w/ wts. 95% 3.98 ± 0.02←
DNN w/ wts. 70% 4.08 ± 0.02

PL1 Mom. 4.80 ± 0.02
Mom. w/ Ellip. weights 4.37 ± 0.02
DNN 4.50 ± 0.02
DNN w/ wts. 3.58 ± 0.01
DNN w/ wts. 95% 3.57 ± 0.01←
DNN w/ wts. 70% 3.83 ± 0.01

Table 1 Sensitivity analysis for two power law spectra (𝑑𝑁 /𝑑𝐸 ∼ 𝐸−𝑁 ; PL2 for 𝑁 = 2, PL1
for 𝑁 = 1) each normalized to produce 105 2-8 keV photons when folded through IXPE’s energy
response. MDP99 gives the sensitivities for the various reconstruction methods; smaller MDP99 is
better. Mom. denotes moments analysis. DNN denotes deep ensemble. Percentages denote tail cut
thresholds, 95% means events with DNN predicted tail probability greater than 95% are removed.

simulated IXPE events, the relative improvements between methods are the important
takeaways as these are likely to generalize to all imaging X-ray polarimeters.

Two baseline classical methods are provided in table 1, the standard moment anal-
ysis described in §2 and a weighted version. The weighted version uses event weights
derived from moment analysis predicted track ellipticities. Events with higher ellip-
ticities are weighted more in polarization estimation, eq.58,59. The specific function
that transforms ellipticities to weights is optimized numerically. The ellipticities pro-
vide a rough proxy for emission angle uncertainty. Even this approximate uncertainty
calculation can yield significant MDP99 improvements.

The base DNN approach predicts emission angles using a deep ensemble but
does not use the predicted uncertainty estimates. The improved emission angle
estimates yield a marginal improvement over the moment analysis and are worse
than a moment analysis with ellipticity based weights. Improvements are small since
most astrophysical spectra are soft, containing many low energy photons, where
DNN and moment analysis emission angle accuracies are comparable. Clearly, the
main improvement to be had in X-ray polarimetry is properly accounting for emission
angle heteroskedasticity by appropriately weighting events. This is born out in the
weighted deep ensemble MDP99 results, where a < 0.75 reduction in MDP99 from
the standard moment analysis is achieved for both spectra. Compared to the classical
ellipticity weight approach, the deep ensemble achieves a ∼ 0.82 MDP99.

A 0.75 reduction in MDP99 means a 0.752 = 0.563 reduction in the number of
counts (and observing time) required to reach the same signal-to-noise ratio.
This makes a lot more science possible for an X-ray polarimetry mission, with
no changes to the existing hardware.
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Removing tail events using the tail vs peak classifier, §4.4, can provide a small
additional sensitivity boost. However, improvements in energy resolution, §4.6, re-
quire substantially stronger tail exclusion with a threshold of 70% or less. There is a
trade-off between achieving good spectral performance and minimizing the MDP99
because the DNN tail vs peak classifier is not perfect. When tail event cuts are
applied, some peak events are lost. What tail cut threshold should be chosen will
depend on the specific telescope and science goals.

It is important to note again that all of the results presented in this chap-
ter are for simulated IXPE events. Fortunately, tests of the DNN techniques
presented here on real IXPE GPD data have yielded similar relative improve-
ments over classical techniques, once real detector systematics are taken into
account. If the simulated detector events are close enough to real events, DNN
performance will generalize.



Contents 47

6 Conclusion and future directions

X-ray polarimetry and its data analysis is a recently developed and rapidly moving
field. Uncertainty aware DNN based approaches yield state-of-the-art signal recov-
ery for imaging X-ray polarimeters and can reduce the required exposure time for
telescopes by up to 45%. Nevertheless, the techniques and discussion presented here
should not be considered the final say, but should form a solid base from which
to develop better data analysis for ever-improving X-ray polarimeters. Indeed, this
chapter mentions multiple promising areas for improvement. These include:

• A unified approach to tail vs peak event classification. Training a separate DNN
to classify tail events and then cutting events based on its predictions is workable,
but clearly not the best solution. A unified DNN approach minimizing a likelihood
function that includes the effect of tail probability on emission angle and energy
reconstruction should be the ultimate aim. In the case of IXPE, tail events originate
from conversions in both the GEM and Beryllium window. These two types of
tail event have different morphological properties, so it may also be useful to treat
these as separate classes.

• Geometric systematics. Another shortcut in the DNN approach presented is using
square ResNets on multiple rotations of non-square track images, §4.2. Again,
this works well but is computationally inefficient during evaluation (the DNNs
see six images of a single track event). A DNN model that works natively with
hexagonal grids should be used for the best results. This DNN model will have
the appropriate inductive biases for hexagonal geometries. A promising potential
candidate would be the new state-of-the-art visual transformers [47]. These DNNs
work with coordinates directly, so can be used for any kind of pixel grid.

Deep learning is also a rapidly moving field, so the specific models presented in this
chapter may quickly become obsolete. However, any future DNN based data analysis
will likely retain the essential ideas: track image processing, individual emission
angle uncertainty estimates, full likelihood maximization, and a reduction of events
external to the main detector. The author hopes that the next generation of imaging
X-ray polarimeters will learn from and improve on the approaches outlined here.
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